Jacobi-Lie Hamiltonian Systems on Real Low-Dimensional Jacobi-Lie Groups and their Lie Symmetries

نویسندگان

چکیده

We study Jacobi-Lie Hamiltonian systems admitting Vessiot-Guldberg Lie algebras of vector fields related to Jacobi structures on real low-dimensional groups. Also, we find some examples two- and three- dimensional Finally, present symmetries three-dimensional

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generalized Lie Bialgebras and Jacobi Structures on Lie Groups

We study generalized Lie bialgebroids over a single point, that is, generalized Lie bialgebras. Lie bialgebras are examples of generalized Lie bialgebras. Moreover, we prove that the last ones can be considered as the infinitesimal invariants of Lie groups endowed with a certain type of Jacobi structures. We also propose a method to obtain generalized Lie bialgebras. It is a generalization of t...

متن کامل

The Hamilton-jacobi Equation on Lie Affgebroids

The Hamilton-Jacobi equation for a Hamiltonian section on a Lie affgebroid is introduced and some examples are discussed.

متن کامل

Generalized Lie Bialgebroids and Jacobi Structures

The notion of a generalized Lie bialgebroid (a generalization of the notion of a Lie bialgebroid) is introduced in such a way that a Jacobi manifold has associated a canonical generalized Lie bialgebroid. As a kind of converse, we prove that a Jacobi structure can be defined on the base space of a generalized Lie bialgebroid. We also show that it is possible to construct a Lie bialgebroid from ...

متن کامل

Einstein structures on four-dimensional nutral Lie groups

When Einstein was thinking about the theory of general relativity based on the elimination of especial relativity constraints (especially the geometric relationship of space and time), he understood the first limitation of especial relativity is ignoring changes over time. Because in especial relativity, only the curvature of the space was considered. Therefore, tensor calculations should be to...

متن کامل

The Jacobi Identity beyond Lie Algebras

Frölicher and Nijenhuis recognized well in the middle of the previous century that the Lie bracket and its Jacobi identity could and should exist beyond Lie algebras. Nevertheless, the conceptual status of their discovery has been obscured by the genuinely algebraic techniques they exploited. The principal objective in this paper is to show that the double dualization functor in a Cartesian clo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Physics Analysis Geometry

سال: 2022

ISSN: ['1812-9471', '1817-5805']

DOI: https://doi.org/10.15407/mag18.01.033